01: Evaluating a Polynomial
Problems
1
(a)
$$ \begin{array}{r c l} P(x) & = & 6x^4 + x^3 + 5x^2 + x + 1 \\[0.5em] & = & 1 + x + 5x^2 + x^3 + 6x^4 \\[0.5em] & = & 1 + (1 + x \cdot (5x + x^2 + 6x^3)) \\[0.5em] & = & 1 + (1 + x \cdot (x \cdot (5 + x + 6x^2)) \\[0.5em] & = & 1 + (1 + x \cdot (x \cdot (5 + (x \cdot (1 + 6x)))) \\[0.5em] & = & 1 + (1 + x \cdot (x \cdot (5 + (x \cdot (1 + (x \cdot 6)))))) \end{array} $$(b)
$$ \begin{array}{r c l} P(x) & = & -3x^4 + 4x^3 + 5x^2 + x - 1 \\[0.5em] & = & - 1 + x + 5x^2 + 4x^3 - 3x^4 \\[0.5em] & = & - 1 + (x \cdot(1 + 5x + 4x^2 - 3x^3)) \\[0.5em] & = & - 1 + (x \cdot(1 + (x \cdot (5 + 4x^2 - 3x^2)))) \\[0.5em] & = & - 1 + (x \cdot(1 + (x \cdot (5 + (x \cdot (4 - 3x)))))) \\[0.5em] & = & - 1 + (x \cdot(1 + (x \cdot (5 + (x \cdot (4 - (x \cdot 3))))))) \end{array} $$(c)
$$ \begin{array}{r c l} P(x) & = & 2x^4 + x^3 - x^2 + 1 \\[0.5em] & = & 1 - x^2 + x^3 + 2x^4 \\[0.5em] & = & 1 + (x \cdot (-x + x^2 + 2x^3)) \\[0.5em] & = & 1 + (x \cdot (x \cdot (-1 + x + 2x^2))) \\[0.5em] & = & 1 + (x \cdot (x \cdot (-1 + (x \cdot (1 + 2x))))) \\[0.5em] & = & 1 + (x \cdot (x \cdot (-1 + (x \cdot (1 + (x \cdot 2)))))) \end{array} $$2
(a) Doing the Horner’s factorization for $P$, means that
$$ \begin{array}{r c l} P(x) & = & 6x^3 - 2x^2 - 3x + 7 \\[0.5em] & = & 7 - 3x - 2x^2 + 6x^3 \\[0.5em] & = & 7 + (x \cdot (-3 - x^2 + 6x^2)) \\[0.5em] & = & 7 + (x \cdot (-3 + (x \cdot (-2 + 6x)))) \\[0.5em] & = & 7 + (x \cdot (-3 + (x \cdot (-2 + (x \cdot 6))))) \\[0.5em] \end{array} $$so
$$ \begin{array}{r c l} P(-\frac{1}{2}) & = & 7 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (-2 + (-\frac{1}{2} \cdot 6))))) \\[0.5em] & = & 7 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (-5) ))) \\[0.5em] & = & 7 + (-\frac{1}{2} \cdot (-3 + \frac{5}{2})) \\[0.5em] & = & 7 + (-\frac{1}{2} \cdot (-\frac{1}{2})) \\[0.5em] & = & 7 + \frac{1}{4} \ . \end{array} $$(b) Because
$$ \begin{array}{r c l} P(x) & = & 8x^5 - x^4 - 3x^3 + x^2 - 3x + 1 \\[0.5em] & = & 1 - 3x + x^2 - 3x^3 - x^4 + 8x^5 \\[0.5em] & = & 1 + (x \cdot (-3 + x - 3x^2 - x^3 + 8x^4)) \\[0.5em] & = & 1 + (x \cdot (-3 + (x \cdot (1 - 3x - x^2 + 8x^3)))) \\[0.5em] & = & 1 + (x \cdot (-3 + (x \cdot (1 + (x \cdot (-3 - x + 8x^2)))))) \\[0.5em] & = & 1 + (x \cdot (-3 + (x \cdot (1 + (x \cdot (-3 + (x \cdot (-1 + 8x)))))))) \\[0.5em] & = & 1 + (x \cdot (-3 + (x \cdot (1 + (x \cdot (-3 + (x \cdot (-1 + (x \cdot 8))))))))) \ , \\[0.5em] \end{array} $$$$ \begin{array}{r c l} P(-\frac{1}{2}) & = & 1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (-1 + (-\frac{1}{2} \cdot 8))))))))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (-1 - 4)))))))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (-5)))))))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (1 + (-\frac{1}{2} \cdot (-3 + \frac{5}{2})))))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (1 + (-\frac{1}{2} \cdot (-\frac{1}{2})))))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (1 + (\frac{1}{4}))))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-3 + (-\frac{1}{2} \cdot (\frac{5}{4})))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-3 -\frac{5}{8})) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot (-\frac{29}{8})) \\[0.5em] & = & 1 + (\frac{29}{16}) \\[0.5em] & = & \frac{45}{16} \ . \end{array} $$(c)
If
$$ \begin{array}{ r c l } P(x) & = & 2x^4 + x^3 - x^2 + 1 \\[0.5em] & = & 1 - x^2 + x^3 + 2x^4 \\[0.5em] & = & 1 + (x \cdot (-x + x^2 + 2x^3)) \\[0.5em] & = & 1 + (x \cdot ( x \cdot (-1 + x + 2x^2)) \\[0.5em] & = & 1 + (x \cdot ( x \cdot (-1 + (x \cdot 1 + 2x)))) \\[0.5em] & = & 1 + (x \cdot ( x \cdot (-1 + (x \cdot 1 + (x \cdot 2))))) \ , \end{array} $$then
$$ \begin{array}{ r c l } P(-\frac{1}{2}) & = & 1 + (-\frac{1}{2} \cdot ( -\frac{1}{2} \cdot (-1 + (-\frac{1}{2} \cdot 1 + (-\frac{1}{2} \cdot 2))))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot ( -\frac{1}{2} \cdot (-1 + (-\frac{1}{2} \cdot 1 - 1)))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot ( -\frac{1}{2} \cdot (-1 + (-\frac{3}{2})))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot ( -\frac{1}{2} \cdot (-1 - \frac{3}{2}))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot ( -\frac{1}{2} \cdot (-\frac{5}{2}))) \\[0.5em] & = & 1 + (-\frac{1}{2} \cdot \frac{5}{4}) \\[0.5em] & = & 1 - \frac{5}{8} \\[0.5em] & = & \frac{3}{5} \ . \end{array} $$3
–
4
(a) Polynomial
$$ \phantom{.} \ P(x) = 1 + x(\frac{1}{2} + (x - 2)(\frac{1}{2} + (x - 3)(-\frac{1}{2}))) \ , $$evaluated at $x = 5$ means that
$$ \begin{array}{r c l} P(5) & = & 1 + 5(\frac{1}{2} + (5 - 2)(\frac{1}{2} + (5 - 3)(-\frac{1}{2}))) \\[0.5em] & = & 1 + 5(\frac{1}{2} + 3(\frac{1}{2} + 2(-\frac{1}{2}))) \\[0.5em] & = & 1 + 5(\frac{1}{2} + 3(\frac{1}{2} - 1)) \\[0.5em] & = & 1 + 5(\frac{1}{2} - \frac{3}{2}) \\[0.5em] & = & 1 - 5 \\[0.5em] & = & -4 \ . \end{array} $$(b) When $x = -1$,
$$ \begin{array}{ r c l } P(-1) & = & 1 - (\frac{1}{2} + (-1 - 2)(\frac{1}{2} + (-1 - 3)(-\frac{1}{2}))) \\[0.5em] & = & 1 - (\frac{1}{2} - 3(\frac{1}{2} - 4(-\frac{1}{2}))) \\[0.5em] & = & 1 - (\frac{1}{2} - 3(\frac{1}{2} + 2)) \\[0.5em] & = & 1 - (\frac{1}{2} - \frac{15}{2}) \\[0.5em] & = & 1 - \frac{1}{2} + \frac{15}{2} \\[0.5em] & = & 8 \ . \end{array} $$5
When (a) $x = \frac{1}{2}$ and (b) $x = - \frac{1}{2}$ and
$$ \phantom{.} \ P(x) = 4 + x(4 + (x - 1)(1 + (x - 2)(3 + (x - 3)(2)))) \ , $$$$ \begin{array}{ r c l } P(\frac{1}{2}) & = & 4 + \frac{1}{2}(4 + (\frac{1}{2} - 1)(1 + (\frac{1}{2} - 2)(3 + (\frac{1}{2} - 3)(2)))) \\[0.5em] & = & 4 + \frac{1}{2}(4 + (\frac{1}{2} - 1)(1 + (\frac{1}{2} - 2)(3 - \frac{5}{2}(2)))) \\[0.5em] & = & 4 + \frac{1}{2}(4 + (\frac{1}{2} - 1)(1 + (\frac{1}{2} - 2)(-2))) \\[0.5em] & = & 4 + \frac{1}{2}(4 + (\frac{1}{2} - 1)(1 - \frac{3}{2})(-2)) \\[0.5em] & = & 4 + \frac{1}{2}(4 + (\frac{1}{2} - 1)(-\frac{1}{2})(-2)) \\[0.5em] & = & 4 + \frac{1}{2}(4 + (-\frac{1}{2})(-\frac{1}{2})(-2)) \\[0.5em] & = & 4 + \frac{1}{2}(4 - 2) \\[0.5em] & = & 5 \ , \end{array} $$and
$$ \begin{array}{ r c l } P(-\frac{1}{2}) & = & 4 -\frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + (-\frac{1}{2} - 2)(3 + (-\frac{1}{2} - 3)(2)))) \\[0.5em] & = & 4 -\frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + (-\frac{1}{2} - 2)(3 + (-\frac{7}{2})(2)))) \\[0.5em] & = & 4 -\frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + (-\frac{1}{2} - 2)(3 - 7))) \\[0.5em] & = & 4 -\frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + (-\frac{1}{2} - 2)(-4))) \\[0.5em] & = & 4 -\frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + (-\frac{5}{2})(-4))) \\[0.5em] & = & 4 -\frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + 10)) \\[0.5em] & = & 4 -\frac{1}{2}(4 + (-\frac{1}{2} - 1)(11)) \\[0.5em] & = & 4 -\frac{1}{2}(4 + (-\frac{3}{2})(11)) \\[0.5em] & = & 4 -\frac{1}{2}(4 - \frac{66}{4}) \\[0.5em] & = & 4 -\frac{1}{2}(- \frac{50}{4}) \\[0.5em] & = & 4 + \frac{50}{8} \\[0.5em] & = & \frac{82}{8} \\[0.5em] & = & \frac{41}{4} \ . \end{array} $$6 - 7
See the blog post “Nested multiplication”.
Computer problems
1 The code for the Octave /
MATLAB nest
function is
function y = nest(d, c, x, b)
if nargin < 4 b = zeros(d, 1); end
y = c(d + 1);
for i = d : -1 : 1
y = y .* (x - b(i)) + c(i);
end
end
where d
is the degree of polynomial, c
is array of d + 1
coefficients
c
, x
the coordinate where to evalute the polynomial, and b
is athe
array of base points.
Now using the function to evaluate $P(x) = 1 + x + \cdots + x^50$ at $x = 1.00001$ can be done by calling
>> nest(50, ones(50), 1.00001)
and the call results in
ans = 51.013
at Octave command line.
The error of the computation by comparing with the equivalent expression $Q(x) = (x^{51} - 1)/(x - 1)$ can be computed by running a command
>> (1.0001 .^ 51 - 1)/(1.0001 - 1)
that yields the answer
ans = 51.128
so the error of computation is then
>> abs(51.128 - 51.013)
i.e.
ans = 0.1150
which is $11,5 \%$.
2
Evaluating
$$ P(x) = 1 - x + x^2 - x^2 + \cdots + x^{98} - x^{99} $$when $x = 1.00001$ with the nest
function can be done by calling the
nest
function as
nest(99, (-1) .^ (0:100 - 1), 1.00001)
Result of the call is
ans = -5.0025e-04
that is, $P(1.0001) = -0.0005$. It’s good to notice that in the previous
call the (-1) .^ (0:100 - 1)
results is a sequence on numbers from $0, 1,
2, \cdots, 99$, and each of these values are used as a exponent to $-1$ in
order to get the coefficients $1, -1, 1, -1, \ldots, -1$ of $P$.